Randomized Distributed Mean Estimation: Accuracy vs Communication
نویسندگان
چکیده
We consider the problem of estimating the arithmetic average of a finite collection of real vectors stored in a distributed fashion across several compute nodes subject to a communication budget constraint. Our analysis does not rely on any statistical assumptions about the source of the vectors. This problem arises as a subproblem in many applications, including reduceall operations within algorithms for distributed and federated optimization and learning. We propose a flexible family of randomized algorithms exploring the trade-off between expected communication cost and estimation error. Our family contains the full-communication and zero-error method on one extreme, and an -bit communication and O (1/( n)) error method on the opposite extreme. In the special case where we communicate, in expectation, a single bit per coordinate of each vector, we improve upon existing results by obtaining O(r/n) error, where r is the number of bits used to represent a floating point value.
منابع مشابه
A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملImpacts of the Negative-exponential and the K-distribution modeled FSO turbulent links on the theoretical and simulated performance of the distributed diffusion networks
Merging the adaptive networks with the free space optical (FSO) communication technology is a very interesting field of research because by adding the benefits of this technology, the adaptive networks become more efficient, cheap and secure. This is due to the fact that FSO communication uses unregistered visible light bandwidth instead of the overused radio spectrum. However, in spite of all ...
متن کاملDistributed QR Factorization Based on Randomized Algorithms
Most parallel algorithms for matrix computations assume a static network with reliable communication and thus use fixed communication schedules. However, in situations where computer systems may change dynamically, in particular, when they have unreliable components, algorithms with randomized communication schedule may be an interesting alternative. We investigate randomized algorithms based o...
متن کاملDistributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds
We study the following generalized matrix rank estimation problem: given an n × n matrix and a constant c ≥ 0, estimate the number of eigenvalues that are greater than c. In the distributed setting, the matrix of interest is the sum of m matrices held by separate machines. We show that any deterministic algorithm solving this problem must communicate Ω(n) bits, which is order-equivalent to tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.07555 شماره
صفحات -
تاریخ انتشار 2016